Darboux Transformation and Soliton Solution of the Nonlocal Generalized Sasa–Satsuma Equation
نویسندگان
چکیده
This paper aims to seek soliton solutions for the nonlocal generalized Sasa–Satsuma (gSS) equation by constructing Darboux transformation (DT). We obtain gSS equation, including double-periodic wave, breather-like, KM-breather solution, dark-soliton, W-shaped soliton, M-shaped periodic double-peak dark-breather, bright-breather, and breather solutions. Furthermore, interaction of these solitons, as well their dynamical properties asymptotic analysis, are analyzed. It will be shown that can reduced into those equation. However, several not found in literature.
منابع مشابه
Generalized Darboux Transformation and Rational Solutions for the Nonlocal Nonlinear Schrödinger Equation with the Self-Induced Parity-Time Symmetric Potential
In this paper, I construct a generalized Darboux transformation for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time symmetric potential. The N-order rational solution is derived by the iterative rule and it can be expressed by the determinant form. In particular, I calculate first-order and second-order rational solutions and obtain their figures according to diffe...
متن کاملDarboux Transformation and N-Soliton Solution for the Coupled Modified Nonlinear Schrödinger Equations
The pulse propagation in the picosecond or femtosecond regime of birefringent optical fibers is governed by the coupled mixed derivative nonlinear Schrödinger (CMDNLS) equations. A new type of Lax pair associated with such coupled equations is derived from the Wadati–Konno–Ichikawa spectral problem. The Darboux transformation method is applied to this integrable model, and the N-times iteration...
متن کاملDarboux transformation for the NLS equation
We analyze a certain class of integral equations associated with Marchenko equations and Gel’fand-Levitan equations. Such integral equations arise through a Fourier transformation on various ordinary differential equations involving a spectral parameter. When the integral operator is perturbed by a finite-rank perturbation, we explicitly evaluate the change in the solution in terms of the unper...
متن کاملmKP hierarchy and the generalized Darboux transformation for the mKP equation with self-consistent sources
The mKP equation with self-consistent sources (mKPESCS) is treated in the framework of the constrained mKP hierarchy. We introduce a new constrained mKP hierarchy which may be viewed as the stationary hierarchy of the mKP hierarchy with self-consistent sources. This offers a natural way to obtain the Lax representation for the mKPESCS. Based on the conjugate Lax pairs, we construct the generali...
متن کاملGeneralized solution of Sine-Gordon equation
In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2023
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11040865